Meet in the Middle

March 10, 2021

My optimizations

```
      F
      : 4

      Sbox
      : 26

      Sbox 8-bit
      : 12

      Sbox 16-bit
      : 12

      Round function
      : 14

      Next roundkey
      : 6

      Encrypt
      : 318

      Encrypt unrolled
      : 314
```

Sbox

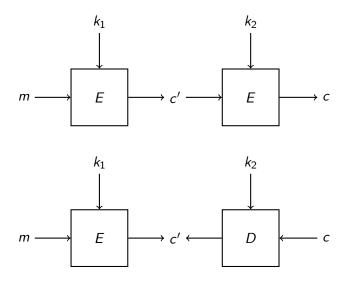
Sbox cont.

```
inline uint64_t apply_sbox8(uint64_t word){
    uint8_t block;
    int i;
    uint64_t word_new;
    word_new = 0;
    int shift = 0:
    for(i=0; i < 8; i++){
        word_new |= SBOX8[word & OxFF] << shift;</pre>
        word >>= 8;
        shift += 8;
    }
    return word_new;
}
```

Last week's exercise (cont.)

- Use inttypes.h or stdint.h (uint32_t, uint64_t, etc.)
- In/output to the system is hexadecimal (and without the 0x)
- ▶ I linked to a makefile tutorial on the website.
- Try all optimization levels, can sometimes save you some cycles.
- ➤ Try combining operations, for TC01 I combined two 4-bit sboxes into an 8-bit sbox.
- You can also combine the linear layer and the sboxes (did not try).
- Use the reference implementation to check your own implementation.
- Please hand in reports in pdf format (I do not have Word).
- ▶ If you have any problems with the exercise, please ask questions!

MitM on 2DES (or 2AES)



Schoolbook MitM implementation on 2AES/2DES/2ETC

Algorithm 1 MitM attack

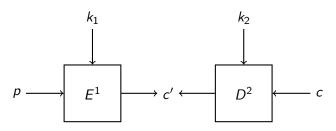
```
Given a plaintext ciphertext pair: (p, m)
Instantiate Hashmap H
for k_1 \in K do
  c'=E_{k_1}(p)
  H[c'] = k_1
end for
for k_2 \in K do
  c' = D_{k_2}(c)
  if c' \in H then
     Output (H[c'], k_2) as a probable key.
  end if
end for
```

Questions

Questions

- ▶ What is the running time of this attack?
- ▶ What is the memory consumption? Peak/Sustained?
- ► How many pairs do we need?

MitM



- Divide the cipher into two sub-ciphers E^1 and E^2 (and D^1 , D^2 for decryption).
- ▶ Compute $c'_1 = E^1_{k_1}(p)$ for each $k_1 \in K_1$.
- ▶ Compute $c'_2 = D^2_{k_2}(p)$ for each $k_2 \in K_2$.
- ▶ If $c'_1 = c'_2$, then k_1 and k_2 are probable keys.

Schoolbook MitM implementation

Algorithm 2 MitM attack

```
For a plaintext ciphertext pair: (p, m)
for k_1 \in K_1 do
  c'=E_{k_1}(p)
  H[c'] = k_1
end for
for k_2 \in K_2 do
  c' = D_{k_2}(c)
  if c' \in H then
     Output (H[c'], k_2) as a probable key.
  end if
end for
```

Questions

Questions

- ▶ What is the running time of this attack?
- ▶ What is the memory consumption? Peak/Sustained?
- ► How many pairs do we need?

Schoolbook MitM implementation (2)

Algorithm 3 MitM attack

```
For a plaintext ciphertext pair: (p, m)
for k_c \in K_1 \cap K_2 do
   Instantiate Hashmap H
  for k_1 \in K_1 \setminus K_2 do
     c'=E_{k_1+k_2}(p)
     H[c'] = k_1
  end for
  for k_2 \in K_2 \setminus K_1 do
     c' = D_{k_2+k_2}(c)
     if c' \in H then
        Output (k_c, H[c'], k_2) as a probable key.
     end if
  end for
end for
```

Questions

Questions

- ▶ What is the running time of this attack?
- ▶ What is the memory consumption? Peak/Sustained?
- ► How many pairs do we need?

Finding MitM attacks

- For every key-bit/cell find the influence after *r* rounds.
- ▶ Find partial key sets K_1 and K_2 s.t. we have at least one common known bit in the middle

TC03

TC03 is a Feistel network with a block size of 8 bits, and a key size of 64-bit.

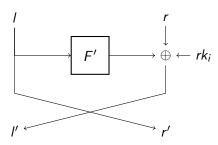
Round Function

$$F'(w) = ((w \ll 1)\&(w \ll 2)) \oplus w$$

Key Schedule

$$K = k_0 |k_1| k_2 |k_3| \dots |k_{15}|$$

The *i*-th round key is given by: $rk_i = k_{(i \mod 16)}$



Breaking TC03

Questions?

- ► How many rounds can we break of TC03?
- How many rounds of TC03 can we break practically?
- ► How to increase/decrease the resistance against MitM attacks?

MitM attack

Given we have found a MitM attack which guesses n_1 and n_2 key bits for the two partial ciphers and without loss of generality we assume that $n_1 < n_2$.

Forward Phase

- We have to build a filter, mapping 2^{n_1} words of size $n_1 + n_2$ bits to words of n_1 bits. Thus, mapping word to key.
- ▶ This takes $2^{n_1} \cdot I$ time, where I is the time to insert an element into the filter.
- ▶ This takes $O(2^{n_1} \cdot (n_2 + n_1))$ memory.

Backward Phase

- ► For each key guess in the backward phase we have to retrieve a value from the filter.
- ▶ This takes $2^{n_2} \cdot R$ time, where R is the time needed to retrieve a value from the filter.

Implementing MitM attacks

When implementing a MitM attack, there are three parts:

- ► Fast computation of the partial encryption/decryption
- Storing a filter
- Querying a filter

There are also two limiting factors:

- ▶ Time complexity
- Memory complexity

Partial encryption/decryption

- Expand 'key' into roundkeys → Fast key enumeration/schedule.
 - By using the key schedule.
 - Use an expansion function to expand masks and a value to round keys.
- Not computing the full state, but only a partial state.
- Fast implementation of the cipher.

Size of the filter

For effective filtering we need to have a properly sized filter. Given that we guess n_1 keybits in the forward direction and n_2 keybits in the backward direction the filter word size w needs to be at least:

$$w = n_1 + n_2$$

bits.

Size of the filter

For effective filtering we need to have a properly sized filter. Given that we guess n_1 keybits in the forward direction and n_2 keybits in the backward direction the filter word size w needs to be at least:

$$w = n_1 + n_2$$

bits.

Proof.

The probability of two random w-bit words being the same is 2^{-w} . Thus the probability that two random keys in the forward and backward direction produce the same w-bit state is: 2^{-w} . Since we are trying $2^{n_1+n_2}$ combinations of keys we get:

$$2^{n_1} \cdot 2^{n_2} \cdot 2^{-w} = 1$$
$$2^{n_1 + n_2 - w} = 1$$
$$n_1 + n_2 - w = 0$$
$$n_1 + n_2 = w$$

Storing a filter

We guess n_1 bits in the forward direction and n_2 bits in the backward direction. As seen before the filter word size is:

- $w = n_1 + n_2$ bits.
 - ► Create a (hash)map H with 2^{n_1} elements mapping w-bit states to n_1 -bit keys.
 - ▶ For every key $k_1 \in \{0...2^{n_1}\}$ append k_1 to the set of keys in $H[E'_{k_1}(p)]$.

Storing a filter

We guess n_1 bits in the forward direction and n_2 bits in the backward direction. As seen before the filter word size is: $w = n_1 + n_2$ bits.

- ► Create a (hash)map H with 2^{n_1} elements mapping w-bit states to n_1 -bit keys.
- ▶ For every key $k_1 \in \{0...2^{n_1}\}$ append k_1 to the set of keys in $H[E'_{k_1}(p)]$.
- ▶ This takes: $2^{n_1} \cdot (w + n_1) \cdot C$ bits of RAM.
- ▶ Given a machine with 2^{40} bits of RAM and C = 1 what can we do?

Storing a filter

We guess n_1 bits in the forward direction and n_2 bits in the backward direction. As seen before the filter word size is: $w = n_1 + n_2$ bits.

- ► Create a (hash)map H with 2^{n_1} elements mapping w-bit states to n_1 -bit keys.
- ▶ For every key $k_1 \in \{0...2^{n_1}\}$ append k_1 to the set of keys in $H[E'_{k_1}(p)]$.
- ▶ This takes: $2^{n_1} \cdot (w + n_1) \cdot C$ bits of RAM.
- ▶ Given a machine with 2^{40} bits of RAM and C = 1 what can we do?

n_1	n_2	Filter size	RAM
20	44	$2^{26.4}$	0.01GB
24	40	$2^{30.4}$	0.17GB
28	36	$2^{34.4}$	2.83GB
32	32	$2^{38.6}$	52GB
36	28	$2^{42.6}$	549GB

Storing a filter (2)

- We can choose not to store the forward key this saves a (Memory) factor n_1 , but adds 2^{n_1} time.
- ▶ If $w < 2 \cdot n_1$ we can store a bit array of size 2^w .
- ► We can use an ordinary list to store the (filter, key) pairs and sort after filling the list. This is better for IO complexity.
- Etc.

Questions

- ▶ Can we match on smaller than $(n_1 + n_2)$ -bit words?
- ▶ What is the lower bound on memory if $n_1 = 32$ and $n_2 = 20$?
- And what is the lower bound for $n_1 = n_2 = 32$?

For next week

- Do this weeks exercise.
- ► Send me an email with what processor you have and the amount of RAM.
- ► If you get stuck, email me.