Meet in the Middle

March 13, 2019

1/25

My optimizations

F 4

Sbox : 26
Sbox 8—bit :12
Sbox 16—bit : 12
Round function : 14
Next roundkey : 6

Encrypt : 318

Encrypt unrolled : 314

2/25

Last week's exercise

Handle ‘ L Sbox Keysched Round function Tot CPB
eran__eran_v 4 12 6 14 314 39
Iktrdfrakacn 8 24 - 34 504 63
dsglsdbijpjk 4 26 - 34 506 63
eszahmekaopa | 4 26 - 34 506 63

3/25

Sbox

uint64_t* generate_8_bit_sbox(uint8_t* sbox){
uint64_t i, word;
uint64_t *sbox_8 calloc (256, sizeof (uint64_t));
for(word=0; word < 256; word++){
sbox_8[word] sbox[word & OxF] |
(sbox [(word >> 4) & O0xF] << 4);

}

return sbox_38;

4/25

Sbox cont.

inline uint64_t apply_sbox8(uint64_t word){
uint8_t block;
int 1i;
uint64_t word_new;

word_new = O0;
int shift = 0;
for(i=0; i < 8; i++){

word_new |= SBOX8[word & OxFF] << shift;
word >>= 8;

shift += 8

}

return word_new;

5/25

Last week's exercise (cont.)

vVvyyvyy

A\

Use inttypes.h or stdint.h (uint32_t, uint64.t, etc.)
In/output to the system is hexadecimal (and without the 0x)
| linked to a makefile tutorial on the website.

Try all optimization levels, can sometimes save you some
cycles.

Try combining operations, for TCO1 | combined two 4-bit
sboxes into an 8-bit sbox.

You can also combine the linear layer and the sboxes (did not
try).

Use the reference implementation to check your own
implementation.

Please hand in reports in pdf format (I do not have Word).

If you have any problems with the exercise, please ask
questions!

6/25

MitM on 2DES (or 2AES)

kq ko
| |
E c E |——c
kq ko
| |
E c D ——c

7/25

Schoolbook MitM implementation on 2AES/2DES /2ETC

Algorithm 1 MitM attack

For a plaintext ciphertext pair: (p, m)
Instantiate Hashmap H
for k1 € K do
= E, (p)
H[C/] = kl
end for
for k, € K do
= Dk2(c)
if ¢/ € H then

Output (H[c'], k2) as a probable key.

end if
end for

8/25

Questions

Questions
» What is the running time of this attack?
» What is the memory consumption? Peak/Sustained?

» How many pairs do we need?

9/25

MitM

k1 ko
p—— F! c D2 [——c

» Divide the cipher into two sub-ciphers E! and E?
(and D, D? for decryption).

» Compute ¢ = E,}l(p) for each ki € Kj.
> Compute c; = D (p) for each k; € K.
> If ¢] = ¢}, then k; and ky are probable keys.

10/25

Schoolbook MitM implementation

Algorithm 2 MitM attack

For a plaintext ciphertext pair: (p, m)
for k; € K1 do
c'= Ei (p)
H[c'| = k
end for
for kr € K> do
= Dkz(c)
if ¢/ € H then

Output (H[c'], k2) as a probable key.

end if
end for

11/25

Questions

Questions
» What is the running time of this attack?
» What is the memory consumption? Peak/Sustained?

» How many pairs do we need?

12/25

Schoolbook MitM implementation (2)

Algorithm 3 MitM attack
For a plaintext ciphertext pair: (p, m)
for k. € K1 N K> do
Instantiate Hashmap H
for ki € K3 \ K> do
¢ = Ey+k.(P)
H[C’] = kl
end for
for k, € K> \ K1 do
¢ = Diptke(c)
if ¢/ € H then
Output (kc, H[c], k2) as a probable key.
end if
end for
end for

13/25

Questions

Questions
» What is the running time of this attack?
» What is the memory consumption? Peak/Sustained?

» How many pairs do we need?

14/25

Finding MitM attacks (by hand)

» For every key-bit/cell find the influence after r rounds.

> Find partial key sets K1 and K> s.t. we have at least one
common known bit in the middle

15/25

TCO03

TCO3 is a Feistel network with a block size of 8 bits, and a key size
of 32-bit.

Round Function
F'(w) =((w < D)&(w k 2))®dw

Key Schedule
K = kolki|kalks] ... |kis
The i-th round key is given by: rki = k(i mod 16)

/

r
l
F' ®

— rk,-

16 /25

Breaking TCO03

Questions?
» How many rounds can we break of TC037?
» How many rounds of TC03 can we break practically?

» How to increase/decrease the resistance against MitM
attacks?

17/25

MitM attack

Given we have found a MitM attack which guesses n; and n» key
bits for the two partial ciphers and without loss of generality we
assume that n1 < no.

Forward Phase

> We have to build a filter, mapping 2™ words of size n; + no
bits to words of ny bits. Thus, mapping word to key.

» This takes 2™ - | time, where [is the time to insert an
element into the filter.

» This takes O(2™ - (n2 + n1)) memory.

Backward Phase

» For each key guess in the backward phase we have to retrieve
a value from the filter.

» This takes 2™ - R time, where R is the time needed to retrieve
a value from the filter.

18/25

Implementing MitM attacks

When implementing a MitM attack, there are three parts:
» Fast computation of the partial encryption/decryption
» Storing a filter
» Querying a filter

There are also two limiting factors:

» Time complexity

» Memory complexity

19/25

Partial encryption/decryption

> Expand ‘key’ into roundkeys — Fast key
enumeration /schedule.

» By using the key schedule.
» Use an expansion function to expand masks and a value to
round keys.

> Not computing the full state, but only a partial state.

» Fast implementation of the cipher.

20/25

Size of the filter
For effective filtering we need to have a properly sized filter. Given
that we guess n; keybits in the forward direction and n, keybits in
the backward direction the filter word size w needs to be at least:

w=ny+n

bits.

21/25

Size of the filter
For effective filtering we need to have a properly sized filter. Given
that we guess n; keybits in the forward direction and n, keybits in
the backward direction the filter word size w needs to be at least:

w=ny+n

bits.
Proof.
The probability of two random w-bit words being the same is 27%.
Thus the probability that two random keys in the forward and

backward direction produce the same w-bit state is: 27, Since
we are trying 2™ combinations of keys we get:

2n1 . 2n2 . 2—W —

2n1+n27W

n+n—w=

|
S ©O =

m —+ ny

[]21/25

Storing a filter

We guess n; bits in the forward direction and ny bits in the
backward direction. As seen before the filter word size is:
w = nq + ny bits.

» Create a (hash)map H with 2™ elements mapping w-bit
states to ni-bit keys.

> For every key k1 € {0...2™} set H[E; (p)] = H[E, (p)] + ki

22/25

Storing a filter

We guess n; bits in the forward direction and ny bits in the
backward direction. As seen before the filter word size is:
w = nq + ny bits.

» Create a (hash)map H with 2™ elements mapping w-bit
states to ni-bit keys.

> For every key k1 € {0...2™} set H[E; (p)] = H[E, (p)] + ki
» This takes: 2™ - (w + ny) - C bits of RAM.

» Given a machine with 240 bits of RAM and C = 1 what can
we do?

22/25

Storing a filter

We guess n; bits in the forward direction and ny bits in the
backward direction. As seen before the filter word size is:

w = nq + ny bits.

» Create a (hash)map H with 2™ elements mapping w-bit
states to ni-bit keys.

> For every key k1 € {0...2™} set H[E; (p)] = H[E, (p)] + ki
» This takes: 2™ - (w + ny) - C bits of RAM.
» Given a machine with 240 bits of RAM and C = 1 what can

we do?
m n w RAM (bits)
20 44 224 0.01GB
24 40 2304 0.17GB
28 36 23*% 2383GB
32 32 2386 5GB
36 28 2%26 549GB

22/25

Storing a filter (2)

» We can choose not to store the forward key this saves a factor
n.

» If w < 2-n; we can store a bit array of size 2".

» We can use an ordinary list to store the (filter, key) pairs and
sort after filling.

> Etc.

23/25

Questions

» Can we match on smaller than (n; + n)-bit words?
» What is the lower bound on memory if n; = 32 and n, = 207
» And what is the lower bound for ny = ny, = 327

24 /25

For next week

» Do this weeks exercise.
» Send me an email with what processor you have and the
amount of RAM.

» Office hours?

25/25

