
Meet in the Middle

March 13, 2019

1 / 25

My optimizations

F : 4
Sbox : 26
Sbox 8−b i t : 12
Sbox 16− b i t : 12
Round f u n c t i o n : 14
Next roundkey : 6
E n c r y p t : 318
E n c r y p t u n r o l l e d : 314

2 / 25

Last week’s exercise

Handle L Sbox Key sched Round function Tot CPB

eran eran v 4 12 6 14 314 39
lktrdfrakacn 8 24 - 34 504 63
dsglsdbijpjk 4 26 - 34 506 63
eszahmekaopa 4 26 - 34 506 63

3 / 25

Sbox

uint64_t* generate_8_bit_sbox(uint8_t* sbox){

uint64_t i, word;

uint64_t *sbox_8 = calloc (256, sizeof(uint64_t));

for(word =0; word < 256; word ++){

sbox_8[word] = sbox[word & 0xF] |

(sbox[(word >> 4) & 0xF] << 4);

}

return sbox_8;

}

4 / 25

Sbox cont.

inline uint64_t apply_sbox8(uint64_t word){

uint8_t block;

int i;

uint64_t word_new;

word_new = 0;

int shift = 0;

for(i=0; i < 8; i++){

word_new |= SBOX8[word & 0xFF] << shift;

word >>= 8;

shift += 8;

}

return word_new;

}

5 / 25

Last week’s exercise (cont.)

I Use inttypes.h or stdint.h (uint32 t, uint64 t, etc.)

I In/output to the system is hexadecimal (and without the 0x)

I I linked to a makefile tutorial on the website.

I Try all optimization levels, can sometimes save you some
cycles.

I Try combining operations, for TC01 I combined two 4-bit
sboxes into an 8-bit sbox.

I You can also combine the linear layer and the sboxes (did not
try).

I Use the reference implementation to check your own
implementation.

I Please hand in reports in pdf format (I do not have Word).

I If you have any problems with the exercise, please ask
questions!

6 / 25

MitM on 2DES (or 2AES)

Em c ′

k1

E

k2

c

Em c ′

k1

D

k2

c

7 / 25

Schoolbook MitM implementation on 2AES/2DES/2ETC

Algorithm 1 MitM attack

For a plaintext ciphertext pair: (p,m)
Instantiate Hashmap H
for k1 ∈ K do
c ′ = Ek1(p)
H[c ′] = k1

end for
for k2 ∈ K do
c ′ = Dk2(c)
if c ′ ∈ H then

Output (H[c ′], k2) as a probable key.
end if

end for

8 / 25

Questions

Questions

I What is the running time of this attack?

I What is the memory consumption? Peak/Sustained?

I How many pairs do we need?

9 / 25

MitM

E 1p c ′

k1

D2

k2

c

I Divide the cipher into two sub-ciphers E 1 and E 2

(and D1, D2 for decryption).

I Compute c ′1 = E 1
k1

(p) for each k1 ∈ K1.

I Compute c ′2 = D2
k2

(p) for each k2 ∈ K2.

I If c ′1 = c ′2, then k1 and k2 are probable keys.

10 / 25

Schoolbook MitM implementation

Algorithm 2 MitM attack

For a plaintext ciphertext pair: (p,m)
for k1 ∈ K1 do

c ′ = Ek1(p)
H[c ′] = k1

end for
for k2 ∈ K2 do

c ′ = Dk2(c)
if c ′ ∈ H then

Output (H[c ′], k2) as a probable key.
end if

end for

11 / 25

Questions

Questions

I What is the running time of this attack?

I What is the memory consumption? Peak/Sustained?

I How many pairs do we need?

12 / 25

Schoolbook MitM implementation (2)

Algorithm 3 MitM attack

For a plaintext ciphertext pair: (p,m)
for kc ∈ K1 ∩ K2 do

Instantiate Hashmap H
for k1 ∈ K1 \ K2 do
c ′ = Ek1+kc (p)
H[c ′] = k1

end for
for k2 ∈ K2 \ K1 do
c ′ = Dk2+kc(c)
if c ′ ∈ H then

Output (kc ,H[c ′], k2) as a probable key.
end if

end for
end for

13 / 25

Questions

Questions

I What is the running time of this attack?

I What is the memory consumption? Peak/Sustained?

I How many pairs do we need?

14 / 25

Finding MitM attacks (by hand)

I For every key-bit/cell find the influence after r rounds.

I Find partial key sets K1 and K2 s.t. we have at least one
common known bit in the middle

15 / 25

TC03
TC03 is a Feistel network with a block size of 8 bits, and a key size
of 32-bit.

Round Function
F ′(w) = ((w ≪ 1)&(w ≪ 2))⊕ w

Key Schedule

K = k0|k1|k2|k3| . . . |k15
The i-th round key is given by: rki = k(i mod 16)

l r

l ′ r ′

rki⊕F ′

16 / 25

Breaking TC03

Questions?

I How many rounds can we break of TC03?

I How many rounds of TC03 can we break practically?

I How to increase/decrease the resistance against MitM
attacks?

17 / 25

MitM attack
Given we have found a MitM attack which guesses n1 and n2 key
bits for the two partial ciphers and without loss of generality we
assume that n1 < n2.

Forward Phase
I We have to build a filter, mapping 2n1 words of size n1 + n2

bits to words of n1 bits. Thus, mapping word to key.

I This takes 2n1 · I time, where I is the time to insert an
element into the filter.

I This takes O(2n1 · (n2 + n1)) memory.

Backward Phase
I For each key guess in the backward phase we have to retrieve

a value from the filter.

I This takes 2n2 · R time, where R is the time needed to retrieve
a value from the filter.

18 / 25

Implementing MitM attacks

When implementing a MitM attack, there are three parts:

I Fast computation of the partial encryption/decryption

I Storing a filter

I Querying a filter

There are also two limiting factors:

I Time complexity

I Memory complexity

19 / 25

Partial encryption/decryption

I Expand ‘key’ into roundkeys → Fast key
enumeration/schedule.
I By using the key schedule.
I Use an expansion function to expand masks and a value to

round keys.

I Not computing the full state, but only a partial state.

I Fast implementation of the cipher.

20 / 25

Size of the filter
For effective filtering we need to have a properly sized filter. Given
that we guess n1 keybits in the forward direction and n2 keybits in
the backward direction the filter word size w needs to be at least:

w = n1 + n2

bits.

Proof.
The probability of two random w -bit words being the same is 2−w .
Thus the probability that two random keys in the forward and
backward direction produce the same w -bit state is: 2−w . Since
we are trying 2n1+n2 combinations of keys we get:

2n1 · 2n2 · 2−w = 1

2n1+n2−w = 1

n1 + n2 − w = 0

n1 + n2 = w

21 / 25

Size of the filter
For effective filtering we need to have a properly sized filter. Given
that we guess n1 keybits in the forward direction and n2 keybits in
the backward direction the filter word size w needs to be at least:

w = n1 + n2

bits.

Proof.
The probability of two random w -bit words being the same is 2−w .
Thus the probability that two random keys in the forward and
backward direction produce the same w -bit state is: 2−w . Since
we are trying 2n1+n2 combinations of keys we get:

2n1 · 2n2 · 2−w = 1

2n1+n2−w = 1

n1 + n2 − w = 0

n1 + n2 = w

21 / 25

Storing a filter
We guess n1 bits in the forward direction and n2 bits in the
backward direction. As seen before the filter word size is:
w = n1 + n2 bits.

I Create a (hash)map H with 2n1 elements mapping w -bit
states to n1-bit keys.

I For every key k1 ∈ {0 . . . 2n1} set H[E ′k1(p)] = H[E ′k1(p)] + k1

I This takes: 2n1 · (w + n1) · C bits of RAM.

I Given a machine with 240 bits of RAM and C = 1 what can
we do?

n1 n2 w RAM (bits)

20 44 226.4 0.01GB
24 40 230.4 0.17GB
28 36 234.4 2.83GB
32 32 238.6 52GB
36 28 242.6 549GB

22 / 25

Storing a filter
We guess n1 bits in the forward direction and n2 bits in the
backward direction. As seen before the filter word size is:
w = n1 + n2 bits.

I Create a (hash)map H with 2n1 elements mapping w -bit
states to n1-bit keys.

I For every key k1 ∈ {0 . . . 2n1} set H[E ′k1(p)] = H[E ′k1(p)] + k1
I This takes: 2n1 · (w + n1) · C bits of RAM.

I Given a machine with 240 bits of RAM and C = 1 what can
we do?

n1 n2 w RAM (bits)

20 44 226.4 0.01GB
24 40 230.4 0.17GB
28 36 234.4 2.83GB
32 32 238.6 52GB
36 28 242.6 549GB

22 / 25

Storing a filter
We guess n1 bits in the forward direction and n2 bits in the
backward direction. As seen before the filter word size is:
w = n1 + n2 bits.

I Create a (hash)map H with 2n1 elements mapping w -bit
states to n1-bit keys.

I For every key k1 ∈ {0 . . . 2n1} set H[E ′k1(p)] = H[E ′k1(p)] + k1
I This takes: 2n1 · (w + n1) · C bits of RAM.

I Given a machine with 240 bits of RAM and C = 1 what can
we do?

n1 n2 w RAM (bits)

20 44 226.4 0.01GB
24 40 230.4 0.17GB
28 36 234.4 2.83GB
32 32 238.6 52GB
36 28 242.6 549GB

22 / 25

Storing a filter (2)

I We can choose not to store the forward key this saves a factor
n1.

I If w < 2 · n1 we can store a bit array of size 2w .

I We can use an ordinary list to store the (filter, key) pairs and
sort after filling.

I Etc.

23 / 25

Questions

I Can we match on smaller than (n1 + n2)-bit words?

I What is the lower bound on memory if n1 = 32 and n2 = 20?

I And what is the lower bound for n1 = n2 = 32?

24 / 25

For next week

I Do this weeks exercise.

I Send me an email with what processor you have and the
amount of RAM.

I Office hours?

25 / 25

